The University of Burdwan
Three/Four-year UG course under NEP
Paper ZOOL1011

Domain and Kingdom Concept

DR. SAGAR ADHURYA

ASSISTANT PROFESSOR IN ZOOLOGY WEST BENGAL EDUCATION SERVICE

Biological Classification Hierarchy

Rank	Definition	Example	
Domain	Highest taxonomic rank; primary divisions of life Eukarya		
Kingdo	Major groups within domains; organisms share fundamental Animalia		
m	characteristics		
Phylum	Division within kingdom	Chordata	
Class	Group within phylum	Mammalia	
Order	Subdivision of class	Primates	
Family	Group within order	Hominidae	
Genus	Closely related species	Homo	
Species	Fundamental unit of classification	Homo	
		sapiens	

Evolution of Classification Systems

Timeline:

- 1735: Carl Linnaeus introduced the rankbased system of nomenclature, establishing Kingdom as the highest rank.
- 1969: Robert Whittaker proposed Five-Kingdom Classification (Monera, Protista, Fungi, Plantae, Animalia)
- 1977-1990: Carl Woese revolutionised taxonomy using 16S ribosomal RNA (rRNA) analysis
- 1990: Three-Domain System introduced (Archaea, Bacteria, Eukarya)
- 1993: Cavelier-Smith separated Chromista from Protista & Plantae due to the presence of their Chlorophyll in the Endoplasmic Reticulum

Why the Change?

- Molecular evidence (16S rRNA gene sequencing) revealed that prokaryotes were NOT a single group
- Archaebacteria and Eubacteria had fundamentally different molecular signatures
- Archaea found to be more closely related to Eukarya than to Bacteria

The Molecular Revolution in Taxonomy

The Molecular Marker: 16S Ribosomal RNA (rRNA)

- Why use rRNA?
- Present in ALL organisms (universally distributed)
- Functionally similar across life forms
- Evolves slowly (good for ancient divergences)
- Sequences can be compared across organisms
- Acts as a "molecular clock" for evolution

Key Findings:

- Prokaryotes are NOT monophyletic (don't share a single common ancestor)
- Two distinct prokaryotic lineages identified
- Archaea are distinct from Bacteria
- Archaea share features with both Bacteria and Eukarya

Domain: The Highest Taxonomic Rank

Feature	Archaea	Bacteria	Eukarya
Cell Type	Prokaryotic	Prokaryotic	Eukaryotic
Nucleus	Absent	Absent	Present
Membrane-Bound	Absent	Absent	Present
Organelles			
Cell Wall	Pseudopeptidoglycan or	Peptidoglycan	Cellulose (plants) or absent
Composition	protein/polysaccharide		(animals)
Membrane Lipids	Ether linkages, branched	Ester linkages,	Ester linkages, straight chains
	chains	straight chains	
Ribosomal	70 S	70S	80S (80S in cytoplasm, 70S in
Structure			mitochondria/chloroplasts)
Antibiotic	Resistant	Sensitive	Variable
Sensitivity			
DNA Structure	Circular	Circular	Linear
Evolutionary Age	Oldest	Ancient	Most recent

Archaea - The Ancient Domain

Characteristics:

- Cell Type: Prokaryotic
- Habitat: Extreme environments (extremophiles)
- Cell Wall: Lacks peptidoglycan; contains pseudopeptidoglycan, polysaccharides, or pure protein
- Membrane Lipids: Unique ether-linked, branched-chain lipids
- **Metabolism:** Autotrophic or heterotrophic

Evolutionary Significance:

- Believed to represent the earliest form of life on Earth
- May provide clues to life on other planets

Major Groups of Archaea:

Methanogens

- Produce methane (CH₄) from organic matter
- Habitat: Anaerobic environments (marshes, digestive systems, ocean sediments)
- Example: Methanobacterium

Halophiles (Salt-Lovers)

- Thrive in hypersaline environments
- Habitat: Dead Sea, Great Salt Lake, salt marshes
- Example: Haloferax

Thermoacidophiles

- Survive extreme heat and acidity
- Habitat: Hot springs (75-80°C), volcanic vents
- Example: Sulfolobus

Psychrophiles

- Cold-loving archaea
- Habitat: Antarctic sea ice, deep ocean vents
- Example: Methanogenium frigidum

Bacteria - Prokaryotes with Peptidoglycan

- Characteristics:
- **Cell Type:** Prokaryotic
- Cell Wall: Contains peptidoglycan (unique to Bacteria)
- Membrane Lipids: Ester-linked, straight-chain lipids
- DNA: Circular chromosome; plasmids may be present
- Reproduction: Binary fission (asexual)
- Habitat: Ubiquitous everywhere on Earth

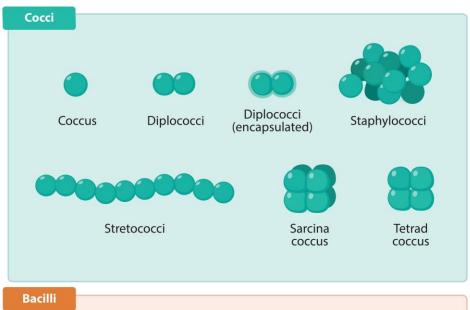
Ecological and Medical Importance:

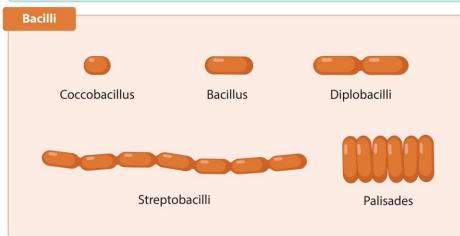

- Nutrient cycling (nitrogen fixation, decomposition)
- Photosynthesis
- Biotechnology (insulin, vaccines, antibiotics)
- Pathogenic species (disease-causing)

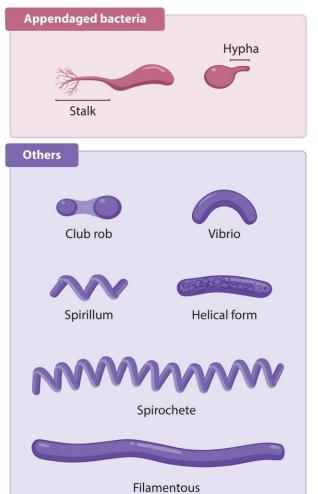
Cyanobacteria (Blue-Green Algae):

- Photosynthetic bacteria
- Contain chlorophyll and thylakoids
- Oxygen producers (responsible for Earth's atmospheric oxygen)

Classification according to gram stain

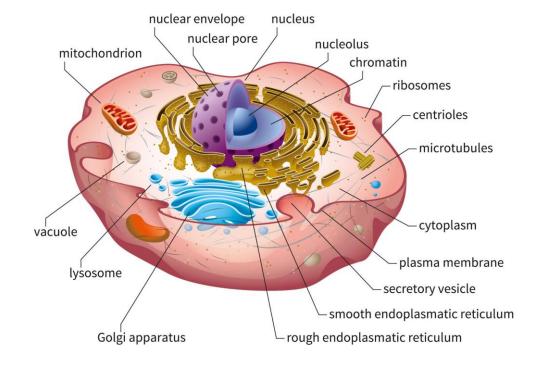

Feature	Gram-Positive Bacteria	Gram-Negative Bacteria	
Cell Wall	Thick peptidoglycan layer	Thin peptidoglycan layer (2-7	
Thickness	(20-80 nm)	nm)	
Outer Membrane	Absent	Present (contains	
		lipopolysaccharides - LPS)	
Membrane	Single cytoplasmic	Double membrane (outer +	
Structure	membrane	cytoplasmic membrane)	
Teichoic Acids	Present (in peptidoglycan	Absent	
	layer)		
Gram Stain	Retain crystal violet dye \rightarrow	Lose crystal violet after	
Reaction	appear purple	decolorization; take up	
		counterstain (safranin) →	
		appear pink/red	
Sensitivity to	More susceptible (due to	Generally more resistant (outer	
Antibiotics	lack of outer membrane)	membrane barrier)	
Resistance to	More prone to cell wall	Less prone	
Lysozyme	disruption		
Examples	Streptococcus, Bacillus, Staph	<u>Escherichia</u>	
	ylococcus	coli, Salmonella, Pseudomonas	



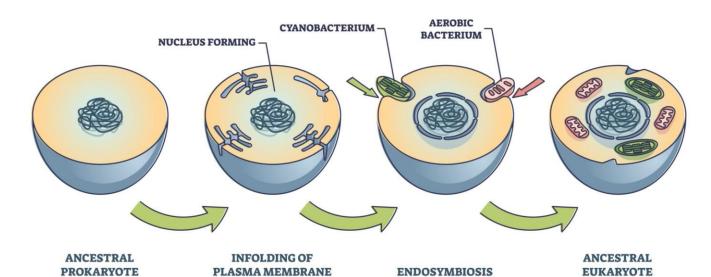

gram-positive bacteria

gram-negative bacteria

Bacterial Morphology Diagram

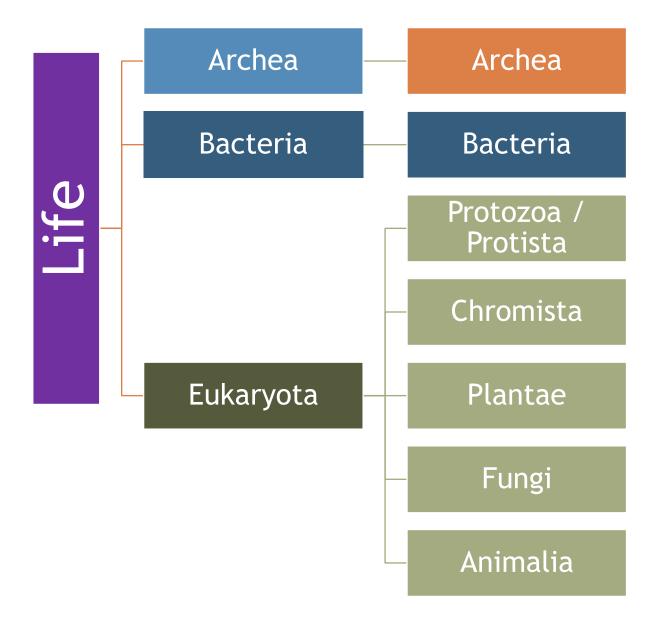


Bacterial classification by morphology


Shape	Description	Examples
Cocci	Spherical	Streptococcus,
	cells	Staphylococcus
Bacilli	Rod-shaped	Bacillus,
	cells	Escherichia coli
Spirilla	Spiral or	Spirillum,
	helical cells	Treponema
Vibrio	Comma-	Vibrio cholerae
	shaped cells	

Eukarya - The Eukaryotic Domain

- Defining Characteristics:
- **Cell Type:** Eukaryotic
- Nucleus: Membrane-bound nucleus containing DNA
- Organelles: Membrane-bound organelles (mitochondria, ER, Golgi, etc.)
- DNA: Linear chromosomes within nucleus
- Ribosomal Structure: 80S ribosomes in cytoplasm
- Reproduction: Sexual and/or asexual
- Size: Generally larger and more complex than prokaryotes



ENDOSYMBIOSIS

Evolutionary Origin

Mitochondria and chloroplasts originated from free-living prokaryotes

3 Domains 7 Kingdoms

Summary of the 7 Kingdoms Shown

- 1. Archaea: (From Domain Archaea)
- 2. Bacteria: (From Domain Bacteria)
- 3. **Protozoa / Protista:** (From Domain Eukaryota) Mostly unicellular, heterotrophic "animal-like" organisms (e.g., amoebas, ciliates).
- Chromista: (From Domain Eukaryota) Mostly photosynthetic organisms,
 including diatoms, brown algae (kelp),
 and water moulds.
- 5. Plantae: (From Domain Eukaryota) -Multicellular, autotrophic (photosynthetic), cellulose cell walls.
- 6. Fungi: (From Domain Eukaryota) Heterotrophic (absorptive), chitin cell walls.
- Animalia: (From Domain Eukaryota) -Multicellular, heterotrophic (ingestive), no cell walls.

12

3 Domains 7 Kingdoms

Characteristic	Bacteria	Archaea	Protozoa	Chromista	Fungi	Plantae	Animalia
Domain	Bacteria	Archaea	Eukarya	Eukarya	Eukarya	Eukarya	Eukarya
Cell Type	Prokaryotic	Prokaryotic	Eukaryotic	Eukaryotic	Eukaryotic	Eukaryotic	Eukaryotic
Nucleus	Absent	Absent	Present	Present	Present	Present	Present
Cellularity	Unicellular	Unicellular	Mostly	Unicellular &	Mostly	Multicellular	Multicellular
			Unicellular	Multicellular	Multicellular		
Cell Wall	Peptidoglycan	Pseudopeptidoglyc	Absent	Varied (Silica,	Chitin	Cellulose	Absent
		an	(Pellicle)	Alginates)			
Nutrition	Auto/Heterotrop	Auto/Heterotrophi	Hetero	Auto	Hetero	Autotrophic	Hetero
	hic	С	(Ingestive)	(Photosynthetic)	(Absorptive)		(Ingestive)
Movement	Flagella	Flagella	Cilia,	Flagella	Stationary	Stationary	Active
			Flagella,	(gametes)			locomotion
			Pseudopodia				
Examples	E. coli,	Methanobacteriu	Amoeba,	Diatoms, Kelp,	Mushrooms,	Mosses,	Insects,
-	Streptococcus	m, Halophiles	Paramecium	Water molds	Yeasts,	Ferns,	Fish,
	•	•	, Giardia		Molds	Flowers	Mammals

Kingdom Protozoa - The "Animal-like" Protists

Key Characteristics:

- Cellularity: Predominantly unicellular.
- Cell Wall: Absent. Many have a flexible outer layer called a "pellicle."
- Nutrition: Heterotrophic (ingestive). They are "hunters" that consume bacteria, algae, or other protozoans.
- Movement: Motile, classified by mode of locomotion:
 - Amoeboids (Sarcodina): Use pseudopodia (false feet). Ex: Amoeba.
 - Ciliates (Ciliophora): Use cilia. Ex: Paramecium.
 - Flagellates (Mastigophora): Use flagella. Ex: Giardia, Trypanosoma.
 - Apicomplexa (Sporozoa): Parasitic, non-motile in adult forms. Ex: Plasmodium (causes malaria).

Ecological & Zoological Importance:

- Form the base of many aquatic food webs (zooplankton).
- Many are significant parasites of animals and humans (e.g., malaria, sleeping sickness, dysentery).
- Important for nutrient cycling in soil and water.

14

Kingdom Chromista - The "Algal" Eukaryotes

Key Characteristics:

- Cellularity: Both unicellular and multicellular forms.
- Cell Wall: Present, but composition varies (e.g., silica in diatoms, alginates in brown algae).
- Nutrition: Predominantly Autotrophic (photosynthetic).
- **Key Trait:** Their chloroplasts were acquired through **secondary endosymbiosis** (engulfing another eukaryote, a red alga), distinguishing them from Plantae.

Major Groups:

- Diatoms (Bacillariophyta): Unicellular algae with intricate silica shells.
- Brown Algae (Phaeophyta): Multicellular, includes giant kelp.
- Water Molds (Oomycota): Fungus-like in appearance, but are heterotrophic Chromists (formerly misclassified as fungi). Cause diseases like potato blight.

Ecological & Economic Importance:

- Massive primary producers; diatoms are responsible for a large percentage of Earth's oxygen.
- Form critical habitats (e.g., kelp forests).
- Diatomaceous earth is used for filtration and pest control.

Kingdom Fungi - The Absorptive Heterotrophs

Key Characteristics:

- Cellularity: Mostly multicellular (e.g., mushrooms, molds). Yeasts are a major unicellular group.
- Cell Wall: Made of CHITIN (the same substance in insect exoskeletons).
- Nutrition: Heterotrophic (absorptive).
 They secrete digestive enzymes into their environment and then absorb the nutrients.
- Structure: The main body is a network of filaments called hyphae, which all together form a mycelium.
- Reproduction: Via spores (both sexually and asexually).

Ecological & Economic Importance:

- Critical decomposers (saprophytes), recycling nutrients back into the ecosystem.
- Food and Drink: Mushrooms, bread (yeast), beer/wine fermentation.
- **Medicine:** Source of antibiotics (e.g., Penicillin).
- Pathogens: Cause diseases in plants and animals (e.g., ringworm, Candida).
- Symbiosis: Form mycorrhizae (with plant roots) and lichens (with algae/cyanobacteria).

Kingdom Plantae - The Multicellular Autotrophs

Key Characteristics:

- Cellularity: Multicellular.
- Cell Wall: Made of CELLULOSE.
- Nutrition: Autotrophic (photosynthetic). Use chloroplasts to convert light energy into chemical energy.
- Energy Storage: Store energy as starch.
- **Structure:** Have differentiated tissues (e.g., roots, stems, leaves) in most groups.
- Life Cycle: Exhibit "Alternation of Generations" (switching between haploid and diploid stages).

Major Groups:

- Bryophytes: Non-vascular (e.g., Mosses).
- Pteridophytes: Vascular, reproduce with spores (e.g., Ferns).
- Gymnosperms: Vascular, "naked" seeds (e.g., Conifers).
- Angiosperms: Vascular, seeds enclosed in fruit (Flowering plants).

Ecological & Economic Importance:

- Primary producers; form the base of terrestrial food webs.
- Produce most of the atmosphere's oxygen.
- Source of food, fuel (wood, biofuels), fiber (cotton), and medicine.

Kingdom Animalia - The Ingestive Heterotrophs

Key Characteristics:

- Cellularity: Multicellular.
- Cell Wall: ABSENT. Cells are held together by proteins like collagen.
- Nutrition: Heterotrophic (ingestive). They must eat other organisms to get energy.
- Movement: Motile (can move) at some point in their life cycle.
- Structure: Possess specialized tissues (e.g., nervous tissue, muscle tissue).
- **Reproduction:** Primarily sexual reproduction.

Major Phyla

- Porifera (Sponges)
- Cnidaria (Jellyfish, Corals)
- Platyhelminthes (Flatworms)
- Nematoda (Roundworms)
- Mollusca (Snails, Clams, Octopus)
- Annelida (Segmented worms)
- Arthropoda (Insects, Spiders, Crustaceans) - the most diverse phylum.
- Echinodermata (Starfish, Sea Urchins)
- Chordata (Includes all Vertebrates: Fish, Amphibians, Reptiles, Birds, Mammals)

Essential Points to Remember

Domain Level

- Three primary domains: Archaea, Bacteria, Eukarya.
- Based on molecular evidence (16S rRNA).
- Distinguishes prokaryotes (Archaea, Bacteria) from eukaryotes (Eukarya).

Kingdom Level (7-Kingdom System)

- Archaebacteria: (Domain Archaea) Prokaryotic extremophiles.
- Eubacteria: (Domain Bacteria) Prokaryotic "true" bacteria with peptidoglycan.
- **Protozoa:** (Domain Eukarya) Unicellular, ingestive heterotrophs ("animal-like").
- Chromista: (Domain Eukarya) Unicellular & multicellular, photosynthetic ("algal-like").
- Fungi: (Domain Eukarya) Absorptive heterotrophs, chitin walls.
- Plantae: (Domain Eukarya) Multicellular autotrophs, cellulose walls.
- Animalia: (Domain Eukarya) Multicellular ingestive heterotrophs, no cell walls.

Essential Points to Remember

Fundamental Distinctions

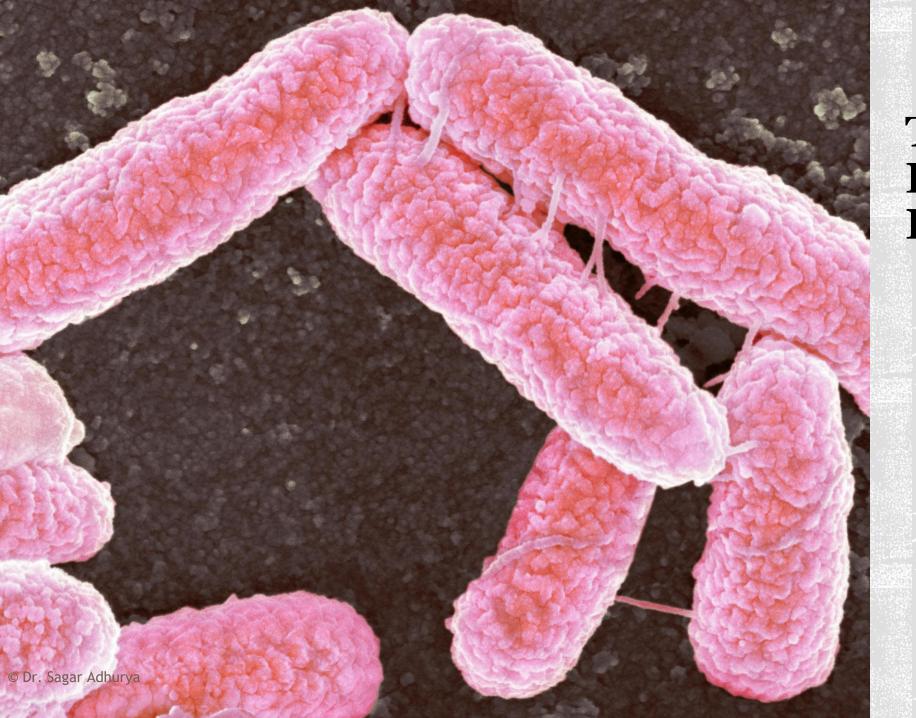
- Prokaryotic vs. Eukaryotic: Presence/absence of a nucleus.
- Autotrophic vs. Heterotrophic: How they obtain energy (make vs. consume).
- Cell Wall Composition: Peptidoglycan, Chitin, Cellulose, or absent.

Classification is Dynamic

• It is not static. It evolves as new molecular data (genomics, proteomics) refines our understanding of evolutionary relationships.

Common misconceptions

Misconception	Reality
Archaea are "primitive bacteria"	Archaea are a distinct domain; as complex as bacteria and
	genetically closer to Eukarya in some ways.
All prokaryotes are bacteria	Archaea are also prokaryotes but are fundamentally different.
Fungi are plants	Fungi are heterotrophic, have chitin walls, and are evolutionarily
	closer to animals than plants.
Protists are all simple and microscopic	Some protists are large (e.g., giant kelp) and complex. "Protista"
	is a grouping of convenience, not a true evolutionary clade.
Animals are the "most evolved"	All living organisms are equally evolved to fit their specific
	environments and ecological niches.
Viruses belong in a kingdom	Viruses are acellular (not cells) and are not classified within the
	Three-Domain system.


Quiz

- What molecular marker did Carl Woese use to establish the 3 Domains?
- Name one key difference between Archaea and Bacteria.
- Why are fungi not classified as plants?
- What is the main feature of Domain Eukarya?

Unanswered Questions!

Unanswered Questions:

- •What was the nature of the Last Universal Common Ancestor (LUCA)?
- -How many undiscovered species exist, especially in microbial domains?

Key taxonomic databases

Catalogue of Life (CoL)

- Link: https://www.catalogueoflife.org
- The most comprehensive and authoritative checklist of all known species. It aims to be a single, consensus classification of all life. It's the best place to check for currently accepted scientific names and their synonyms.

NCBI Taxonomy

- Link: https://www.ncbi.nlm.nih.gov/taxonomy
- The definitive database for genetic and molecular data. It provides the standard classification used by researchers for genetic sequencing (GenBank). If you're looking up a species' genetic information or its formal classification in scientific literature, this is the primary source.

GBIF (Global Biodiversity Information Facility)

- Link: https://www.gbif.org
- The top resource for where species are located. It aggregates

occurrence data (specimen records and observations) from museums, research institutions, and citizen scientists worldwide. It's essential for biogeography and viewing species distribution maps.

ITIS (Integrated Taxonomic Information System)

- Link: https://www.itis.gov
- A highly authoritative taxonomic database, used as a standard by many North American government agencies but with broad global coverage. It provides a reliable taxonomic backbone for linking various biological datasets.

ZooBank

- Link: https://zoobank.org
- The official registry of the International Commission on Zoological Nomenclature (ICZN). This is where new species names, nomenclatural acts (like changing a name), and their original publications are officially registered.